QUALITY FUNCTION DEPLOYMENT (QFD) & KEY BUYING FACTORS (KBF)

SUDARSHANA KARKALA | EV.ENGINEER | carsoftwaresystems@gmail.com | +91 9845561518 | LinkedIn | CAR SOFTWARE SYSTEMS

INTRODUCTION

What is Quality Function Deployment (QFD)?

Quality Function Deployment (QFD) is a structured approach used to transform customer needs (Voice of Customer - VOC) into engineering requirements. It plays a critical role in EV Battery Management System (BMS) software development by ensuring that design, production, and performance align with customer expectations.

Why is QFD Important in EV BMS Development?

- Aligns product development with customer expectations
- Ensures safety, reliability, and efficiency in BMS design
- Optimises manufacturing processes to meet performance standards
- Reduces time-to-market by minimising redesign efforts

FOUR PHASES OF QFD FOR EV BMS DEVELOPMENT

Phase 1: Product Definition (House of Quality - HOQ)

- Identify customer needs for EV battery efficiency, longevity, and charging performance.
- Define measurable engineering requirements (thermal management, SOC/SOH estimation, charge-discharge cycles).
- Benchmark against competitors (Tesla, BYD, Rivian).

Phase 2: Product Development

- Translate system-level specifications into BMS hardware and software requirements.
- Develop firmware optimisation techniques for real-time battery monitoring.
- Ensure compliance with ISO 26262 (Functional Safety), ASPICE, and IEC 61508.

Phase 3: Process Development

- Define manufacturing and assembly process flows.
- Identify critical process characteristics affecting battery efficiency.
- Develop process control strategies to enhance software integration.

Phase 4: Process Quality Control

- Identify critical failure modes in BMS software.
- Implement automated validation techniques (HIL, SIL, PIL simulations).
- Conduct real-world performance testing under extreme conditions.

HOUSE OF QUALITY FOR EV BMS DEVELOPMENT

Building the House of Quality (HOQ)

- Step 1: Capture the Voice of Customer (VOC) Identify key customer expectations such as:
 - Faster charging times
 - Improved State of Charge (SOC) estimation
 - Long-term battery health management
- Step 2: Define Technical Requirements (Voice of Engineer VOE)
 - Battery pack cooling efficiency
 - Energy management software accuracy
 - Real-time diagnostics & fault tolerance
- Step 3: Relationship Matrix
 - Map customer requirements to engineering specifications.
 - Establish strong, moderate, and weak relationships between attributes.
- Step 4: Competitive Benchmarking
 - Compare charging speeds, thermal performance, and software reliability with competitors.

Customer Need	BMS Technical Feature	Relationship Strength
Fast Charging	Optimized Charge Algorithms	Strong
Battery Life	AI-driven SOC Estimation	Moderate
Safety	Thermal Overload Protection	Strong

Example - Applying QFD in EV BMS:

What are Key Buying Factors?

Key Buying Factors (KBF) are the primary aspects that influence customer decisions when purchasing an Electric Vehicle (EV). In BMS development, these factors determine:

- Battery safety and reliability
- Charging convenience and efficiency
- Total cost of ownership (TCO)

Top KBFs in EV BMS Software Development

- Battery Range & SOC Accuracy
 - Precise State of Charge (SOC) and State of Health (SOH) monitoring.
 - Adaptive energy optimisation algorithms to extend battery range.

• Fast Charging & Thermal Management

- Minimised battery overheating using active thermal regulation.
- Fast-charging algorithms without battery degradation.
- Over-the-Air (OTA) Updates & Diagnostics
 - Remote BMS firmware updates for continuous performance improvement.
 - Cloud-based predictive analytics for failure prevention.

• Lifecycle & Durability

- Al-based battery wear prediction models.
- Smart charging profiles for prolonged battery life.

Cybersecurity & Compliance

- Encrypted BMS communication to prevent hacking threats.
- Compliance with ISO 21434 (Automotive Cybersecurity).

Example - Key Buying Factors in EV BMS Software:

Key Buying Factor	Impact on BMS Development
Battery Range	Optimized Energy Management
Charging Speed	Fast Charging Algorithms
Safety	AI-Based Fault Detection

WORKFLOW DIAGRAM FOR QFD & KBF IMPLEMENTATION IN BMS

Step-by-Step Workflow:

- **Customer Research** \rightarrow Gather insights on EV buyer preferences.
- **Benchmarking** \rightarrow Compare existing EV BMS solutions.
- **QFD House of Quality Development** \rightarrow Define BMS technical attributes.
- **KBF Impact Assessment** \rightarrow Prioritise development features.
- **Prototype & Validation** \rightarrow Test algorithms under real-world conditions.
- **Production & Optimisation** \rightarrow Implement findings into BMS firmware & updates.

(Workflow diagram will illustrate interconnections between QFD & KBF processes)

CASE STUDY : QFD & KBF IN FAST-CHARGING EV BMS

Case Study : Enhancing EV Fast Charging with QFD & KBF

Challenge: EV owners demand faster charging without overheating.

QFD Approach:

- 1. **Capture VOC:** Customers need 80% charge in 15 minutes.
- 2. **Define** Technical Requirements:
 - Implement adaptive cooling algorithms.
 - Reduce thermal stress during charging.

3. Apply KBF Analysis:

- Benchmark against Tesla Supercharger & Rivian DC fast charging.
- Optimise charge profiles for higher efficiency & battery longevity.

4. **Testing & Validation:**

- Simulate fast-charging cycles in lab & real-world conditions.
- Ensure minimal battery degradation post-500 charge cycles.

Results:

- Charging time reduced by 30%.
- Battery degradation minimised by 25%.
- Customer satisfaction increased due to improved predictability.

CONCLUSION & INDUSTRY BEST PRACTICES

- QFD aligns EV BMS software development with user needs.
- KBF analysis ensures customer-driven innovation in battery technology.
- Al-powered SOC/SOH estimation improves battery lifecycle management.
- OTA updates and cybersecurity safeguards enhance BMS performance.

Industry Best Practices for QFD & KBF in BMS Development:

- Implement AI-Driven SOC Prediction Enhance range estimation.
- Prioritise Fast-Charging Optimisation Improve battery lifespan.
- Leverage Cloud-Based BMS Monitoring Enable real-time diagnostics.
- Ensure Regulatory Compliance Follow ISO 26262 & ASPICE.
- Enhance Cybersecurity Measures Protect against hacking threats.